
Copyright Red Centre Software 2012-2016 Page 1 of 10

Data Cleaning and Validation in Ruby
© 2012-2016. Protected by International Copyright law. All rights reserved worldwide.

Version: January 2016

This document remains the property of Red Centre Software

Pty Ltd and may only be used by explicitly authorised

individuals who are responsible for its safe-keeping and

return upon request.

No part of this document may be reproduced or distributed

in any form or by any means - graphic, electronic, or

mechanical, including, but not limited to, photocopying,

recording, taping, email or information storage and retrieval

systems - without the prior written permission of Red Centre

Software Pty Ltd.

Copyright Red Centre Software 2012-2016 Page 2 of 10

Data Cleaning and Validation in Ruby

This document briefly outlines some techniques and approaches to data cleaning and data

validation using the Ruby survey data processing system.

INTRODUCTION ... 3

DATA CLEANING BY DIRECT EDITS ... 4

DATA CLEANING BY CONSTRUCTING ... 6

DATA VALIDATION .. 7

Histogram of all weight values .. 7
ZeroSumCheck Table .. 8
Confirm Verbatim Coding ... 9
Tracking Updates ... 10

Copyright Red Centre Software 2012-2016 Page 3 of 10

INTRODUCTION

Ruby can handle all processing of survey case data. Even though this is optional – you could

do all case data processing in Quantum, Merlin, UNCLE, CfMC, even SPSS and more recently

IBM Data Collection, etc, and employ Ruby simply as a desktop analysis tool – it is nonetheless

recommended that all such processing is done within Ruby. The advantages of this are

 All processing is transparent to the analyst

 Far easier for DP to diagnose data-related issues

 Avoids daisy-chaining applications

 Post-field, all participants from DP through to researchers, account managers and

end-clients, all use Ruby (although in different ways) on the same case data

A quick description of Ruby’s scope would be Quantum + Quanvert, or IBM Data Collection

processing + Survey Reporter. To this we also add E-Tabs/Rosetta Stone-type functionality for

MS Office deliverables, fuzzy-logic auto-coding of verbatims, and multi-variant analyses such

as perceptual maps, CHAID, cluster analysis and regression.

Data processing in Ruby is implemented using scripting or programming languages such as

VBScript, JScript, VB.Net, CSharp, etc. You can even use the macro facility in Excel – in short,

any modern programming environment will do. If using VBScript, then programming for Ruby

looks very much like programming for IBM Data Collection, or for Survey Reporter tables,

except that the Ruby scripts are much shorter and a great deal easier to understand.

Most of our clients use either VBS or VB.Net. Note that generic and free programming

environments can be used, unlike IBM Data Collection.

Copyright Red Centre Software 2012-2016 Page 4 of 10

DATA CLEANING BY DIRECT EDITS

By data cleaning edits, I mean over-writing case data either conditionally or arbitrarily in situ.

Another variable to carry the clean data is not required. The parameters to the Clean

command are

<target variable>, <find scope>, <replacement value>, <condition>, <log file name>

Some example cleaning statements are:

'' List all cases with a code 3
 rub.Clean "List", "D1", 3

'' List all blank cases
 rub.Clean "List", "D1", "blank"

'' Replace 3 with 5
 rub.Clean "Replace", "D1", 3, 5

'' Replace 3 with 999 if BBL is 7 (true cases 3,5,11)
 rub.Clean "Replace", "D2", 3, 999, "BBL(7)"

'' Replace 3 with 10*sum of codes 1/10 in BBE
 rub.Clean "Replace", "D3", 3, "10*sum_BBE(1/10)"

'' Replace 3 with sum of all codes in BBE / 10 if BBL is 7
 rub.Clean "Replace", "D4", 3, "sum_BBE(*)/10", "BBL(7)"

'' Replace blank line with sum of all codes in BBE / 10
 rub.Clean "Replace", "D5", "blank", "sum_BBE(*)/10", "BBL(7)"

'' Replace codes 1/3;5 with 99
 rub.Clean "Replace", "D6", "1/3;5", 99

'' Replace everything matching target line structure if D7 is anything but empty
 rub.Clean "Replace", "D7", "any", "sum_BBE(*)/10"

'' Replace everything including blank lines
 rub.Clean "Replace", "D8", "all", "sum_BBE(*)/10"

'' Replace 3 with explicit missing code
 rub.Clean "Replace", "D9", "3", "missing"

'' Replace 1 with 101, 2 with 102, 3 with 103
 rub.Clean "Replace", "D10", "1/3", "101/103"

'' Remove 1 and 3
 rub.Clean "Remove", "D11", "1;3"

'' Replace all data items with missing code
 rub.Clean "Replace", "D12", "any", "missing"

'' Replace all data items with missing code if BBL is 7
 rub.Clean "Replace", "D13", "any", "missing", "BBL(7)"

'' Replace everything including empty cases with explicit missing code if BBL is 7
 rub.Clean "Replace", "D14", "all", "missing", "BBL(7)"

'' Emit 999 at all blank lines
 rub.Clean "Emit", "D15", "blank", 999)

'' Emit 999 if BBL is a 7

Copyright Red Centre Software 2012-2016 Page 5 of 10

 rub.Clean "Emit", "D16", "", 999, "BBL(7)"

'' Emit the sum of BBE codes / 10 if BBL is a 7
 rub.Clean "Emit", "D17", "", "sum_BBE(*)/10", "BBL(7)"

Each CleanVar call writes the edited cases to a log file. There can be many different logs, and

log files can be specified per clean as the last parameter. The log output for the above first

several examples is

Copyright Red Centre Software 2012-2016 Page 6 of 10

DATA CLEANING BY CONSTRUCTING

Constructing creates a new variable from existing variables. This is appropriate when

researchers need access to the original case data, exactly as collected. There are a great

many ways to construct new variables in Ruby. For cleaning-type operations, such as

unreversing mis-assigned codes, a DefCon (Define a Construction) call is usually employed.

For example

 DefCon "cQ1", "Brand Awareness"

 AddItem 1, "Q1(1)", "Brand 1"

 AddItem 2, "Q1(3)", "Brand 2"

 AddItem 3, "Q1(2)", "Brand 3"

 ConClose

This creates a new variable, cQ1, which has a code 2 where the original Q1 had a 3, and a 3

where the original Q1 had a 2.

If this clean was required only for a fixed period of time, say wave 1, then the filters would be

 DefCon "cQ1", "Brand Awareness"

 AddItem 1, "Q1(1)", "Brand 1"

 AddItem 2, "Q1(3)&Wave(1)|Q1(2)&~Wave(1)", "Brand 2"

 AddItem 3, "Q1(2)&Wave(1)|Q1(3)&~Wave(1)", "Brand 3"

 ConClose

& = Boolean AND, | = Boolean OR, and ~ = Boolean NOT, as is common in many

programming languages. There is no practical limit to the complexity of the filter expressions.

DefCon, AddItem and ConClose are part of the Ruby DP language, implemented in a VB.Net

library. In effect (and a few have done this), if you do not like our DP language, then you can

always design your own from the Ruby APIs in the programming language of your own choice.

The Ruby syntax is the same in all programming environments – eg the filter expression

"Q1(3)&Wave(1)|Q1(2)&~Wave(1) ". Learning Ruby DP is more a matter of understanding

the quoted syntax (which is sent on to Ruby for evaluation or action) than of learning a

computer language.

Copyright Red Centre Software 2012-2016 Page 7 of 10

DATA VALIDATION

Data validation confirms that the case data makes sense, and that there is data where it is

expected, and that there is no data where it is not expected. Here are a few of the techniques

commonly employed (there are many more).

Histogram of all weight values

The job has 22,918 cases, and the weight value for each case is plotted on the Y axis. The

weights are unstable up to about case# 7,000, and around case# 20,000. To identify the high

weights, either zoom in by dragging from either end of the X axis:

Copyright Red Centre Software 2012-2016 Page 8 of 10

(shows that case IDs 5213 and 5248 have excessive weights), or by converting to a table, and

sorting in reverse order:

To the extent that most other cross tabulators would not allow a table with 22,918 rows, this is

not a common technique.

ZeroSumCheck Table

This is a table of any banner, usually something like the last 13 weeks, by every variable in the

job, where only the marginals are displayed. For categorical variables, the count of codes is

shown, and for quantitative or uncoded variables, the sum of values. The row labels show both

the syntax form and the plain English form, so that correctness in the variable labelling can be

confirmed.

The intention of this table is to determine where variables sum to zero. It frequently catches

missing verbatims because the human-coded data had not been remerged with the main case

data, and is generally useful for spotting any unexpected changes in the response patterns,

and for confirming that new variables are collecting when they ought to, and that retired

variables are not.

Some example output is

Copyright Red Centre Software 2012-2016 Page 9 of 10

The first row tells me that the variable CSP1 is labelled as Top of Mind Brand Awareness, and

that the number of responses in each week was between high 40s and high 60s. If the value

for 17Aug11 was 400, or 7, then that would most likely indicate a problem, because those

values are completely out of character with the past behaviour. Similarly, high code counts

would be expected for Aided Brand Awareness, so a very low count anywhere would be a

surprise. The final blank row tells me that this variable has been retired from the job, and if I

saw any counts at all for When Last Bought, then that would indicate an error somewhere.

Confirm Verbatim Coding

Verbatims are a frequent source of problems, especially in tracking jobs where different coders

may all work on the same job at different times. In most other systems, the raw verbatims

are not disclosed as crosstabbable variables, because the number of unique responses can get

very high. As per the Weight histogram chart above, Ruby can do tables with tens of

thousands of rows (or columns), so tables of raw verbatim by coded verbatim are trivial to

specify, and given such a table, analysts can immediately validate for the levels of accuracy.

For example, this table has the raw verbatims down the side, and the coded categories across

the top, with the columns sorted to the left on the third row:

Copyright Red Centre Software 2012-2016 Page 10 of 10

This tells me that the raw response text Aston MArtin Mazda Mercedes-Benz has been correctly

coded for all three brand mentions.

It is standard practice in Ruby jobs to allow all raw verbatims to be present, and they can be

used in the same ways as any categorical.

Tracking Updates

For continuous tracking jobs, there is no limit to the number of things which can go wrong at

an update, so we have exhaustive procedures in place to catch processing errors before any

damage can be done.

1. The current import file (eg *.sav) is compared to the last import file to ensure that the

contents are compatible, and that any new/dropped variables are listed so that the

operator can see if the field supplier has made unscheduled or arbitrary changes

2. The Ruby data storage is then checked for case integrity to ensure that there has been

no inadvertent damage since the last update (user-error or machine error)

3. At the import itself, the post-import Ruby job is automatically compared to the pre-

import job and every difference in code frames or the variable set is reported via an

audit file

4. Post-import tests include:

a) ZeroSumCheck table (as above)

b) Tables of collection period by weights to ensure that the weights have been

correctly calculated within each data-collection period

c) Statistical tests on the weight variable(s) for standard error, standard deviation, and

mean

d) Detailed reports on the weight calculations, similar to the reports created by

Quantum

e) Histograms of the actual weight values (as above)

f) Histogram of the wave ID to ensure that the case data is all in chronological order

g) Any other tables as appropriate to ensure that various check-sum relationships

pertain, eg that Top of Mind + Unaided Other = Total Awareness – this ensures that

the human coders have not multiply-coded the same brand, or that the same brand

is in both Top of Mind AND Unaided Other

For complex tracking operations, all the above steps are scripted. This ensures that no step

can be accidentally omitted.

[end of document]

