
Confidential. Copyright 2016 Red Centre Software Page 1 of 31

Beginner Guide to VB for Ruby

© 2016. Protected by International Copyright law. All rights reserved worldwide.

Version: 23 May 2016

This document remains the property of Red Centre Software

Pty Ltd and may only be used by explicitly authorised

individuals who are responsible for its safe-keeping and

return upon request.

No part of this document may be reproduced or distributed

in any form or by any means - graphic, electronic, or

mechanical, including, but not limited to, photocopying,

recording, taping, email or information storage and retrieval

systems - without the prior written permission of Red Centre

Software Pty Ltd.

Such permission is granted to Ruby licensees on a need-to-have basis.

If you do not have a Ruby license, then you must not save or download

this document. You are restricted to on-line viewing only.

Confidential.

Confidential. Copyright 2016 Red Centre Software Page 2 of 31

Beginner Guide to VB for Ruby

This document explains the essential concepts required for Ruby scripting using Microsoft’s VB

(Visual Basic) platforms. VBScript is used initially, because it has the simplest syntax and runs

directly from Ruby. Some examples are then modified for VB for Applications (using Excel) and

VB.Net.

The approach taken is practical rather than theoretical, since only elementary programming

concepts are required. The aim is to be able to understand, edit and write Ruby scripts which do

something useful as soon as possible.

VB SCRIPT ..3

Hello World ...3
Variables and Assignment ..4
String Concatenation ..5
Conditionals ..5

If…Then .. 5
If…Then…Else... 6
If…Then…End If .. 6
If…Then…Else…End If .. 7
If…Then…ElseIf…Else…End If .. 7

Boolean Operators ...7
Relational Operators ...8
Arithmetic Operators ...8
Loops ..9

For…Next... 9
While…Wend .. 11

Arrays .. 12
Sub-routines .. 14

Parameters .. 15
Functions ... 15
Variable Types ... 16

Numeric, String and Boolean ... 16
Objects ... 17
Assigning an Object - Excel.. 17
Assigning an Object - Ruby .. 18
Generate Table, Copy to Excel ... 19

Examples ... 20
Documentation .. 20

VB FOR APPLICATIONS .. 21

Using Excel .. 21
Other MS Office ... 25
Examples ... 25
Documentation .. 25

VB.NET ... 26

IDEs ... 26
Syntax .. 26
Variable Typing .. 28
Scope ... 28
Parameter Types ... 29
Object Types ... 29
Examples ... 30
Documentation .. 30

RUBY DOCUMENTATION ... 31

Confidential. Copyright 2016 Red Centre Software Page 3 of 31

VB SCRIPT

Hello World

The traditional starting point is to get your computer to put up a message saying “Hello World”.

The purpose of this is to ensure that all the system components are in place for your computer to

respond to scripted instructions and do something.

The built-in scripting platform uses VB Script. The VB Script engine is actually part of Windows

itself, so nothing extra needs to be installed.

To start the editor

 Scripting | Edit

To start a new scripting document

 File | New or click the New icon on the local toolbar

A blank document opens.

 Type exactly this (or copy/paste the three lines below):

Sub Main

 MsgBox "Hello World"

End Sub

 Click the Run button

Confidential. Copyright 2016 Red Centre Software Page 4 of 31

You should see

This simple exercise tells you that:

The starting point for a VB program is Sub Main

The MsgBox command takes a string parameter

String literals are double-quoted

The end point is marked by End Sub

Note that double quotes must ALWAYS be "…" and NEVER “…”. This is most often a problem

when copy/pasting VB code which has come through a text processor (eg Word) which defaults to

sloping quotes. All code examples in this document should be copyable. By code, we mean lines

of VB script, and not a survey category code like 1=Under 18 (and coding means to write a script,

not assign categorical codes to verbatims).

Variables and Assignment

A variable in the VB context means a named value (most commonly numeric or string) where the

name is fixed, but the value is not. Variable names must start with an alpha, and have no

punctuation other than underscore. You can otherwise call a variable anything you want as long

as your name does not conflict with a name already exposed in the VB platform – for example,

you cannot use main or sub or msgbox or end. Variable names are case-independent.

This example assigns the value 5 to a variable called myvar and then displays it:

Sub Main

 myvar = 5

 MsgBox myvar

End Sub

This example assigns the value “I like cats” to a string variable called mystrvar and then displays

it:

Sub Main

 mystrvar = "I like cats"

 MsgBox mystrvar

End Sub

This example gives an error, because msgbox is a reserved word (or key word):

Confidential. Copyright 2016 Red Centre Software Page 5 of 31

Since variable names (and routine names) are case-independent, you could write

 mystrvar = "I like cats"

 msgbox MyStrVar

This is needlessly confusing, of course, so it is always a good idea to self-enforce consistent

casing as a work practice.

String Concatenation

The string concatenation operator is &.

Sub Main

 v1 = "cats"

 v2 = "dogs"

 MsgBox "I like " & v1 & " and " & v2

End Sub

“cats”, “dogs”, “I like ” and “ and ” are called string literals. v1 and v2 are called string variables.

Conditionals

If…Then

This is the simplest condition. The entire If…Then must be on a single line.

Confidential. Copyright 2016 Red Centre Software Page 6 of 31

Note that the equality operator in VB is the same as the assignment operator.

myvar = 5

If myvar = 5 then…

The = sign has two meanings. In the first usage, the value of 5 is assigned to or stored in the

variable myvar. In the second usage, myvar is tested against 5 for equality. The VB engine

knows which is which from the context.

If…Then…Else

If the Then clause is not true, the Else clause is executed instead. The entire If…Then…Else must

be on a single line.

If…Then…End If

If more than one line is needed, then you use End If to mark the end of the block.

Sub Main

 v1 = "cats"

 v2 = "dogs"

 flag = true

 If flag Then

 MsgBox "v1 means " & v1

 MsgBox "v2 means " & v2

 End If

Confidential. Copyright 2016 Red Centre Software Page 7 of 31

End Sub

If…Then…Else…End If

Sub Main

 v1 = "cats"

 v2 = "dogs"

 flag = true

 If flag Then

 MsgBox "v1 means " & v1

 MsgBox "v2 means " & v2

 Else

 MsgBox "the value of flag is false"

 End If

End Sub

If…Then…ElseIf…Else…End If

Sub Main

 flag1 = false

 flag2 = true

 If flag1 Then

 MsgBox "flag1 is true"

 ElseIf flag2

 MsgBox "flag2 is true"

 Else

 MsgBox "flag1 and flag2 are both false"

 End If

End Sub

Note that ElseIf does not have a space, whereas End If does.

Boolean Operators

The common logical operators are the full words And, Or and Not.

Sub Main

 flag1 = false

 flag2 = true

 If flag1 And flag2 Then

 MsgBox "both flags are true"

 ElseIf flag1 Or flag2

 MsgBox "one or the other is true"

 ElseIf Not (flag1 And flag2)

 MsgBox "both flags are false"

 End If

End Sub

Note the parentheses in ElseIf Not (flag1 And flag2). (flag1 And flag2) is first evaluated to either

true or false, which is then reversed by Not to either false or true.

Confidential. Copyright 2016 Red Centre Software Page 8 of 31

Relational Operators

The relational operators are

< less than

> greater than

<= or =< less than or equal to

>= or => greater than or equal to

= equal to

Sub Main

 val1 = 5

 val2 = 10

 If val1 < val2 Then

 MsgBox val1 & " is less than " & val2

 ElseIf val1 = val2 Then

 MsgBox val1 & " is the same as " & val2

 ElseIf val1 > val2 Then

 MsgBox val1 & " is greater than " & val2

 ElseIf val1 <= val2 Then

 MsgBox val1 & " is less than or equal to " & val2

 ElseIf val1 >= val2 Then

 MsgBox val1 & " is greater than or equal to " & val2

 Else

 MsgBox "Could not evaluate the relation"

 End If

End Sub

Arithmetic Operators

All standard operators are supported:

+ addition

- subtraction

* multiply

/ divide

^ raise to the power of

Mod remainder after division, 6 Mod 5 = 1

() order of operations

Sub Main

 val1 = 5

 val2 = 10

 MsgBox val1*val2 '' 50

 MsgBox val1/val2 '' 0.50

 MsgBox val1^2 '' 25

 MsgBox val2 Mod val1 '' 0

End Sub

Confidential. Copyright 2016 Red Centre Software Page 9 of 31

Loops

For…Next

It is tedious having to always write one line per action. What if you need to do the same thing

many times, but with a different value plugged in each time? A good example is a times table

routine.

Sub Main

 outputstr = ""

 For i = 1 to 12

 outputstr = outputstr & i & " times 12 = " & i*12 & vbNewLine

 Next

 MsgBox outputstr

End Sub

Note the vbNewLine. This is a VB system constant, defined for you by Windows. The advantage of

system constants is that if running on a different operating system such as Unix or OSx, which

have a different line termination convention to Windows, then the operating system will enforce

the correct terminator for you. Otherwise, you would need many slightly different versions of a

script for different operating systems.

Note that you can assign a variable to itself.

Confidential. Copyright 2016 Red Centre Software Page 10 of 31

For…Next loops can be nested.

Sub Main

 outputstr = ""

 For i = 9 to 10

 For j = 1 to 12

 outputstr = outputstr & i & " times " & j & " = " & i*j & vbNewLine

 Next

 Next

 MsgBox outputstr

End Sub

The output is

Confidential. Copyright 2016 Red Centre Software Page 11 of 31

The loop iterations can be stepped.

While…Wend

While a condition is true, execute all steps until Wend is encountered.

Sub Main

 x = 0

 While x < 10

 x = x+1

 Wend

 MsgBox x

End Sub

Confidential. Copyright 2016 Red Centre Software Page 12 of 31

When x reaches 10, the While loop breaks and x is no longer incremented.

Arrays

An array is a set of variables stored contiguously and accessed by index. For example, you

frequently need to show a list of pets. You could do this:

Sub Main

 MsgBox "cat"

 MsgBox "dog"

 MsgBox "parrot"

 MsgBox "iguana"

End Sub

But that is tedious if required more than once. Instead, store the pet types in an array, as

Sub Main

 petarray = Array("cat", "dog", "parrot", "iguana")

 For i = 0 To 3

 MsgBox petarray(i)

 Next

End Sub

Petarray(0) is “cat” and petarray(3) is “iguana”.

Having to manually count the array items is error prone. If you accidentally do this

 For i = 0 To 4

then you get an error, because there is no 5th position (at index 4).

Confidential. Copyright 2016 Red Centre Software Page 13 of 31

To guard against this, use the system function UBound() (‘U’=upper), as

If you do not know what values the array will hold, or want to populate the array dynamically,

then you declare the array to be a particular size first.

Sub Main

 Dim timearray(3)

 For i = 0 To UBound(timearray)

 timearray(i) = Now

 MsgBox timearray(i)

 Next

End Sub

The array is declared using the Dim keyword. Dim is short for Dimension as a verb, ie,

“Dimension an array called timearray with four positions, indexed as 0 to 3”. Different langauges

have different ways of declaring an array. The VB way is to use the Dim keyword.

Now is another system function which returns the current date and time.

Confidential. Copyright 2016 Red Centre Software Page 14 of 31

Sub-routines

Sub is short for sub-routine. The Main routine (itself a subroutine) will typically call other sub-

routines:

Sub Main

 DoTask_1

 DoTask_2

 DoTask_3

End Sub

Sub DoTask_1

 MsgBox "Doing task #1"

End Sub

Sub DoTask_2

 MsgBox "Doing task #2"

End Sub

Sub DoTask_3

 MsgBox "Doing task #3"

End Sub

The intention of subroutines is to break up long tasks into many sub-tasks.

MsgBox is itself a system sub-routine, provided out-of-the-box by the VB Script engine. How the

string is displayed in a popup window is of no interest to us – just as long as it works.

Confidential. Copyright 2016 Red Centre Software Page 15 of 31

Parameters

MsgBox has a string parameter. Similarly, we could initialise our tasks 1, 2 and 3 with some

starter information by passing parameters, so that only one sub-routine is required. For example,

if the tasks are to calculate something:

Sub Main

 Calculate "+", 1, 2

 Calculate "-", 3, 4

 Calculate "*", 5, 6

End Sub

Sub Calculate(operator, op1, op2)

 If operator = "+" Then

 MsgBox op1 & operator & op2 & " = " & op1 + op2

 ElseIf operator = "-" Then

 MsgBox op1 & operator & op2 & " = " & op1 - op2

 ElseIf operator = "*" Then

 MsgBox op1 & operator & op2 & " = " & op1 * op2

 End If

End Sub

The parameters for the Calculate() sub-routine are an operator as a string and two operands as

integers.

Functions

Functions are similar to sub-routines, in that they perform a task, but a function additionally

returns a value. The function’s return value is assigned to the function name.

Sub Main

 MsgBox Calculate("+", 1, 2)

 MsgBox Calculate("-", 3, 4)

 MsgBox Calculate("*", 5, 6)

 MsgBox Calculate("$", 5, 6) '' $ is not handled by Calculate()

End Sub

Function Calculate(operator, op1, op2)

 If operator = "+" Then

 Calculate = op1 + op2

 ElseIf operator = "-" Then

 Calculate = op1 - op2

 ElseIf operator = "*" Then

 Calculate = op1 * op2

 Else

 MsgBox "Unknown operator " & operator & " for Calculate()"

 End If

End Function

Note these highlights:

Confidential. Copyright 2016 Red Centre Software Page 16 of 31

Function parameters must be parenthesised so that the VB parser knows to expect the expression

to resolve to a single value.

Calculate is a function, not a variable, but the assignment syntax is the same.

A function definition is terminated with End Function.

Variable Types

Numeric, String and Boolean

So far, we have seen numeric, string and Boolean variables. These are usually called primitive

variables, because they contain only a single value. In VBScript, a variable type is determined

only by context, and the type can change during execution.

Confidential. Copyright 2016 Red Centre Software Page 17 of 31

Objects

Object variables, on the other hand, can contain multiple simultaneous instances of values,

subroutines and functions (called Properties and Methods in object-speak). An object is typically

organised as a hierarchy of parent/child sub-objects with the leaf nodes as the properties or

methods. The members of the hierarchy are accessed by dot syntax. For example, to add a

comment to a cell in Excel:

Application.ActiveCell.AddComment "This is a comment"

Application is the Excel application object.

ActiveCell is a child object of the Application object.

AddComment is a method (ie a subroutine) of ActiveCell which takes a string parameter.

The Application object members can be examined in Excel:

An object’s hierarchy, methods and properties is called an object model.

Assigning an Object - Excel

An object variable is clearly a great deal more powerful than just a numeric or string variable,

since it is the access point to the exposed functionality of complete applications, such as Excel,

Word, or Ruby. To make it clear when you intend to assign an object, VBScript (and VBA) uses

the Set keyword.

Sub Main

 Set exapp = CreateObject("Excel.Application") '' system magic to get Excel

 exapp.Visible = true '' make visible

 Set exbook = exapp.Workbooks.Add() '' get a workbook from the app

 Set exsheet = exbook.WorkSheets.Add() '' get a sheet from the workbook

 exsheet.Name = "Test" '' assign to the Name property

 exsheet.Cells(1,1).Value = "Hi there!" '' put some text in cell A1

Confidential. Copyright 2016 Red Centre Software Page 18 of 31

End Sub

Assigning an Object - Ruby

In the same way, we can get script access to Ruby’s functionality like this:

Sub Main

 Set rub = CreateObject("Ruby.App1") '' system magic

 Set rep = rub.GenTab("TestTab", "Gender", "ABA") '' assign table to rep

 rep.Save '' invoke Save method

End Sub

The variable names rub and rep could be any legal name, eg

 Set mary = CreateObject("Ruby.App1")

 Set jack = mary.GenTab("TestTab", "Gender", "ABA")

 jack.Save

But this makes keeping track of what’s going on rather difficult. You could be completely explicit,

eg

 Set ruby = CreateObject("Ruby.App1")

 Set report = ruby.GenTab("TestTab", "Gender", "ABA")

 report.Save

or

 Set table = ruby.GenTab("TestTab", "Gender", "ABA")

 table.Save

It is always good practice to use variable names which are short, but not too short at the expense

of clarity.

The functionality exposed by the Ruby Application object and the Report object is fully

documented here:

Confidential. Copyright 2016 Red Centre Software Page 19 of 31

API is the TLA for Application Programmer Interface. Unlike Excel, which has hundreds, possibly

thousands of objects, Ruby has only two: the application object and the report (document)

object.

Generate Table, Copy to Excel

We can put the above Excel and Ruby examples together, to achieve something useful.

Sub Main

 Set rub = CreateObject("Ruby.App1") '' system magic to get Ruby

 Set exapp = CreateObject("Excel.Application") '' system magic to get Excel

 exapp.Visible = true '' make visible

 Set exbook = exapp.Workbooks.Add() '' get a workbook from the app

 Set exsheet = exbook.WorkSheets.Add() '' get a sheet from the workbook

 Set rep = rub.GenTab("Test Table", "Gender", "ABA") '' assign table object to rep

 rep.Copy "HTML,Labels" '' put on clipboard, HTML format

 exsheet.Paste() '' paste to sheet

End Sub

Confidential. Copyright 2016 Red Centre Software Page 20 of 31

Examples

There are many examples of VBScript in the standard Ruby installation. See \Ruby\Jobs*.vbs for

scripts which can be used on any job, and \Ruby\Jobs\Demo\Scripts*.vbs for job-specific scripts.

Documentation

The official documentation for VBScript is script56.chm, which can be downloaded from

http://www.microsoft.com/en-au/download/details.aspx?id=2764

*.chm is an active file type, so you may have to unblock the file to access its contents, depending

on your security settings.

http://www.microsoft.com/en-au/download/details.aspx?id=2764

Confidential. Copyright 2016 Red Centre Software Page 21 of 31

VB FOR APPLICATIONS

Using Excel

All of the above code examples can be executed in Excel, or any other Microsoft Office

application.

First, confirm that your Excel has the Developer tab:

If not, then

 Right click on the Ribbon and select Customize Ribbon

 Check the Developer item, OK

Confidential. Copyright 2016 Red Centre Software Page 22 of 31

To enter a script

 Developer | Macros

Then

 Enter the name as Main

 Select This Workbook

 Click Create

Confidential. Copyright 2016 Red Centre Software Page 23 of 31

Excel allows you to use another name, but we retain Main to be consistent with the VBScript

examples above.

A skeleton project is set up for you, as

You can now copy/paste any of the above VBScript examples (except the Excel ones), eg

Confidential. Copyright 2016 Red Centre Software Page 24 of 31

To run, put the cursor anywhere inside the Main subroutine body, and then click the Run button.

A major advantage of Excel over the built-in Ruby script editor is debugging. You can set

breakpoints, watch variables and examine variable values by mouse hovering:

i = 0 tells me that I am on the first iteration of the loop.

The reason why the VBScript examples which call Excel cannot be used as-is in Excel is because

you are already in Excel. The example which generates a Ruby table and copies it to Excel needs

to be rewritten (much more simply), as

Confidential. Copyright 2016 Red Centre Software Page 25 of 31

Other MS Office

Word, PowerPoint, Outlook, all use the same environment for scripting, but of course their object

models are completely different.

Examples

For examples which are executed from Excel and call Ruby, see

\Ruby\Jobs\Demo\Docs\CustomDashboard.xlsm

\Ruby\Jobs\Demo\Docs\CustomSpreadsheetPull.xlsm

\Ruby\Jobs\Demo\Docs\GenTabSpecsServer.xlsm

Documentation

The official VBA documentation is presently at

https://www.microsoft.com/en-us/download/details.aspx?id=9034

https://www.microsoft.com/en-us/download/details.aspx?id=9034

Confidential. Copyright 2016 Red Centre Software Page 26 of 31

VB.NET

IDEs

VBScript (Ruby internal) is OK for simple tasks, but anything complicated benefits greatly from a

complete and modern interactive development environment. You can use Visual Studio Express

(free), Visual Studio Community (free to small enterprises), any commercial Visual Studio edition,

or various free 3rd party .Net IDEs such as SharpDevelop. The screenshots below show

SharpDevelop.

For Visual Studio Express download and installation, see page 9ff of Job Update Using the Ruby

BEST Libraries.pdf

For SharpDevelop, see

http://www.redcentresoftware.com/sharpdevelop-an-alternative-ide-to-visual-studio-express/

Syntax

Whereas VBScript and VBA are 99% identical languages, VB.Net has enough differences to render

it a dialect. VB.Net is intended for use by software professionals, so it is stricter than VBScript –

in particular you cannot just make up variables as you go along – they have to be declared before

use.

For example, this VBScript

Sub Main

 x = 5

End Sub

gives an error:

http://www.redcentresoftware.com/sharpdevelop-an-alternative-ide-to-visual-studio-express/

Confidential. Copyright 2016 Red Centre Software Page 27 of 31

The fix is to declare x first, as

It would have been better IMHO if the designers of the original BASIC language had used Dec for

Declare rather than Dim for Dimension, but it is as it is, so Dim means to Declare, that is, you say

up front what variables you need.

Some other syntactic differences are: each file must have an internal Module name, and all

subroutine calls need parentheses around parameters.

The default module name is Module1, but you can change it to any legal name. For details on

other syntax differences, see page 85ff of Job Update Using the Ruby BEST Libraries.pdf:

Confidential. Copyright 2016 Red Centre Software Page 28 of 31

Variable Typing

Whereas VBScript tries to convert between strings and numbers or other types automatically,

the .Net environment can help catch design-time bugs and improve performance by typing

variables as integer, string, boolean, double, etc.

This gives an error because x is declared as an integer:

If there is no type indicated in the declaration, then the variable is a Variant, which means it can

be assigned any type.

Scope

If a variable is declared outside of all subroutines, then it is available to all (as immediately

above), but if within a subroutine, then only to that subroutine.

Confidential. Copyright 2016 Red Centre Software Page 29 of 31

The variable x is declared inside Main(), so it is not available to TryPrint().

Parameter Types

Passed parameters need to be typed also. To avoid the above error, x needs to be passed to

TryPrint(), as

Object Types

In VB.Net, objects are strongly typed, and each object has its own type. This prevents accidental

mix-ups, by ensuring an object is treated in the right way. Here is the VBscript which generates

and copy/pastes a table to Excel translated to VB.Net:

Imports Ruby

Imports Excel = Microsoft.Office.Interop.Excel

Confidential. Copyright 2016 Red Centre Software Page 30 of 31

Module Module1

 Sub Main()

 Dim rub As Ruby.App1 = New Ruby.App1()

 Dim rep As Ruby.RubyReport = New Ruby.RubyReport()

 Dim exapp As Excel.Application = New Excel.Application()

 exapp.Visible = true

 Dim exbook As Excel.Workbook = exapp.Workbooks.Add()

 Dim exsheet As Excel.Worksheet = exbook.WorkSheets.Add()

 rep = rub.GenTab("Test Table", "Gender", "ABA")

 rep.Copy("HTML,Labels")

 exsheet.Paste()

 End Sub

End Module

This is clearly a bit more complicated.

The two Imports lines get system access to the two objects. Microsoft.Office.Interop.Excel is

rather long, so that is assigned to the much shorter Excel (or any other legal name of your

choosing).

The Ruby object type is Ruby.App1, and the report (or document) type is Ruby.RubyReport.

The next four lines start up Excel, make it visible, and add a workbook and worksheet.

Note that objects must be New’ed, and that the parameter string to rep.Copy must be

parenthesised.

The Set keyword, required in VBScript and VBA, is not part of VB.Net.

Examples

There are many examples in the standard Ruby installation. Look for folders called \VSX in the

Demo job, and in the jobs under the \Ruby\Jobs\BEST\ subdirectory.

Documentation

The official documentation is at

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

DotNet Pearls has many clear and simple examples, see

http://www.dotnetperls.com/vb

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx
http://www.dotnetperls.com/vb

Confidential. Copyright 2016 Red Centre Software Page 31 of 31

RUBY DOCUMENTATION

The major docments for Ruby are the API Help and Job Update Using the Ruby BEST

Libraries.pdf:

[end of document]

